2,533 research outputs found

    Higher-order solutions to non-Markovian quantum dynamics via hierarchical functional derivative

    Full text link
    Solving realistic quantum systems coupled to an environment is a challenging task. Here we develop a hierarchical functional derivative (HFD) approach for efficiently solving the non-Markovian quantum trajectories of an open quantum system embedded in a bosonic bath. An explicit expression for arbitrary order HFD equation is derived systematically. Moreover, it is found that for an analytically solvable model, this hierarchical equation naturally terminates at a given order and thus becomes exactly solvable. This HFD approach provides a systematic method to study the non-Markovian quantum dynamics of an open system coupled to a bosonic environment.Comment: 5 pages, 2 figure

    Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter

    Get PDF
    We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~-20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics

    Noncontact Diffuse Correlation Tomography of Human Breast Tumor

    Get PDF
    Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamic

    Dynamical invariants in non-Markovian quantum state diffusion equation

    Full text link
    We find dynamical invariants for open quantum systems described by the non-Markovian quantum state diffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical to the system density operator, these dynamical invariants no longer share the equation of motion for the density operator. Moreover, the invariants obtained with from bi-orthonormal basis can be used to render an exact solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or numerical simulations. Significantly we show that we can apply these dynamic invariants to reverse-engineering a Hamiltonian that is capable of driving the system to the target state, providing a novel way to design control strategy for open quantum systems.Comment: 6 pages, 2 figure

    Personal Exposure to Submicrometer Particles and Heart Rate Variability in Human Subjects

    Get PDF
    We conducted a study on two panels of human subjects—9 young adults and 10 elderly patients with lung function impairments—to evaluate whether submicrometer particulate air pollution was associated with heart rate variability (HRV). We measured these subjects’ electrocardiography and personal exposure to number concentrations of submicrometer particles with a size range of 0.02–1 μm (NC(0.02–1)) continuously during daytime periods. We used linear mixed-effects models to estimate the relationship between NC(0.02–1) and log(10)-transformed HRV, including standard deviation of all normal-to-normal intervals (SDNN), square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.40 Hz), adjusted for age, sex, body mass index, tobacco exposure, and temperature. For the young panel, a 10,000-particle/cm(3) increase in NC(0.02–1) with 1–4 hr moving average exposure was associated with 0.68–1.35% decreases in SDNN, 1.85–2.58% decreases in r-MSSD, 1.32–1.61% decreases in LF, and 1.57–2.60% decreases in HF. For the elderly panel, a 10,000-particle/cm(3) increase in NC(0.02–1) with 1–3 hr moving average exposure was associated with 1.72–3.00% decreases in SDNN, 2.72–4.65% decreases in r-MSSD, 3.34–5.04% decreases in LF, and 3.61–5.61% decreases in HF. In conclusion, exposure to NC(0.02–1) was associated with decreases in both time-domain and frequency-domain HRV indices in human subjects

    Ser-634 and Ser-636 of Kaposi’s Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites

    Get PDF
    The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA

    Bis(μ-biphenyl-2,2′-dicarboxyl­ato)bis­[aqua­(2,2′-bipyridine)cadmium(II)]

    Get PDF
    In the centrosymmetric dinuclear mol­ecule of the title compound, [Cd2(C14H8O4)2(C10H8N2)2(H2O)2], the Cd2+ ion is coordinated by three O atoms from two different diphenyl­dicarboxyl­ate (dpa) ligands (one O,O′-bidentate and one monodentate), a chelating bipyridine ligand and a water mol­ecule, generating an extremely distorted trigonal-prismatic (or irregular) CdN2O4 coordination geometry for the metal ion. The bridging ligands generate an 18-membered ring, which is stabilized by two pairs of intra­molecular O—H⋯O hydrogen bonds

    Effects of Particle Size Fractions on Reducing Heart Rate Variability in Cardiac and Hypertensive Patients

    Get PDF
    It is still unknown whether the associations between particulate matter (PM) and heart rate variability (HRV) differ by particle sizes with aerodynamic diameters between 0.3 μm and 1.0 μm (PM(0.3–1.0)), between 1.0 μm and 2.5 μm (PM(1.0–2.5)), and between 2.5 μm and 10 μm (PM(2.5–10)). We measured electrocardiographics and PM exposures in 10 patients with coronary heart disease and 16 patients with either prehypertension or hypertension. The outcome variables were standard deviation of all normal-to-normal (NN) intervals (SDNN), the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), low frequency (LF; 0.04–0.15 Hz), high frequency (HF; 0.15–0.40 Hz), and LF:HF ratio for HRV. The pollution variables were mass concentrations of PM(0.3–1.0), PM(1.0–2.5), and PM(2.5–10). We used linear mixed-effects models to examine the association between PM exposures and log(10)-transformed HRV indices, adjusting for key personal and environmental attributes. We found that PM(0.3–1.0) exposures at 1- to 4-hr moving averages were associated with SDNN and r-MSSD in both cardiac and hypertensive patients. For an interquartile increase in PM(0.3–1.0), there were 1.49–4.88% decreases in SDNN and 2.73–8.25% decreases in r-MSSD. PM(0.3–1.0) exposures were also associated with decreases in LF and HF for hypertensive patients at 1- to 3-hr moving averages except for cardiac patients at moving averages of 2 or 3 hr. By contrast, we found that HRV was not associated with either PM(1.0–2.5) or PM(2.5–10). HRV reduction in susceptible population was associated with PM(0.3–1.0) but was not associated with either PM(1.0–2.5) or PM(2.5–10)
    corecore